Interactions between rubella virus capsid and host protein p32 are important for virus replication.
نویسندگان
چکیده
The distribution and morphology of mitochondria are dramatically affected during infection with rubella virus (RV). Expression of the capsid, in the absence of other viral proteins, was found to induce both perinuclear clustering of mitochondria and the formation of electron-dense intermitochondrial plaques, both hallmarks of RV-infected cells. We previously identified p32, a host cell mitochondrial matrix protein, as a capsid-binding protein. Here, we show that two clusters of arginine residues within capsid are required for stable binding to p32. Mutagenic ablation of the p32-binding site in capsid resulted in decreased mitochondrial clustering, indicating that interactions with this cellular protein are required for capsid-dependent reorganization of mitochondria. Recombinant viruses encoding arginine-to-alanine mutations in the p32-binding region of capsid exhibited altered plaque morphology and replicated to lower titers. Further analysis indicated that disruption of stable interactions between capsid and p32 was associated with decreased production of subgenomic RNA and, consequently, infected cells produced significantly lower amounts of viral structural proteins under these conditions. Together, these results suggest that capsid-p32 interactions are important for nonstructural functions of capsid that include regulation of virus RNA replication and reorganization of mitochondria during infection.
منابع مشابه
Involvement of p32 and microtubules in alteration of mitochondrial functions by rubella virus.
The interaction of the rubella virus (RV) capsid (C) protein and the mitochondrial p32 protein is believed to participate in virus replication. In this study, the physiological significance of the association of RV with mitochondria was investigated by silencing p32 through RNA interference. It was demonstrated that downregulation of p32 interferes with microtubule-directed redistribution of mi...
متن کاملThe Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax
Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. W...
متن کاملUltrastructural Study of Rotavirus Replication and Localization of the Intermediate Capsid Protein VP6
Rotavirus, a triple-layered non-enveloped member of the Reoviridae family, obtained a transient membrane envelope when newly synthesized subviral particles bud into the endoplasmic reticulum (ER). As rotavirus particles mature, they lose their transient membrane and obtain outer layer. It is mostly believed that only double layered particles bud into the ER. The present study describes that the...
متن کاملStimulation of dendritic cell functional maturation by capsid protein from chikungunya virus
Objective(s): Chikungunya virus (ChikV) infection is characterized by persistent infection in joints and lymphoid organs. The ChikV Capsid protein plays an important role in regulating virus replication. In this study, we hypothesized that capsid protein may stimulate dendritic cell (DC) activation and maturation and trigger an inflammatory response in mice. ...
متن کاملPhosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication.
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 16 شماره
صفحات -
تاریخ انتشار 2005